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Abstract

The purpose of this paper is to review the various approaches to second law analysis and to present a rational

method which satis®es the physical requirements. It is not the intention to review all previous work, but to present
an approach that resolves some perceived inconsistencies and paradoxes. Some new relationships are derived,
particularly for the local rate generation process, and for the nearly-balanced counter¯ow arrangement with a `long'

duty. It is also shown that the basic entropy generation relationship for gas ¯ows is controlled by the ¯ow Mach
number, which is consistent with an extension of Shapiro's classical one-dimensional ¯ow analysis of a compressible
gas with friction and heat addition. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Much work on the second law analysis of heat
exchangers has been conducted by Bejan [1], Sekulic

[2], McClintock [3], Witte and Shamsundar [4],
London and Shah [5], and others. One of the main
di�erences between workers lies in how the entropy

generation rate is non-dimensionalised, and examin-
ation of this is given in Section 3. The present analysis
will be restricted to perfect gas ¯ow on the basis that

frictional entropy generation for liquids is very small
in most situations.

2. Basics of entropy generation

We start with the ®rst and second law statements for
a one-dimensional heat transfer duct as given by Bejan

[6], referring to Fig. 1:

1st law: _m dh � q 0 dx �1�

2nd law: d _Sgen � _m dsÿ q 0 dx
T� DT

r0 �2�

The canonical thermodynamic relationship for entropy

is

dh � T ds� dp

r
, �3�

giving

dh

dx
� T

ds

dx
� 1

r
dp

dx
�4�

Linking Eqs. (1)±(3) gives

_S
0
gen �

d _Sgen

dx
� q 0DT

T 2�1� t� �
_m

rT

�
ÿ dp

dx

�
�5�

where t � DT=T, the dimensionless temperature di�er-
ence.
A starting point for our understanding of the

entropy generation process can be obtained by consid-
ering just the thermal component, and noting that
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q 0 � apsDT �6�

where ps is the surface perimeter. Then it is easily
shown by substitution in Eq. (5) that for an incremen-
tal surface area DAs, the incremental entropy gener-
ation D _Sgen is given by

D _Sgen � aDAst 2

1� t
�7�

Thus the entropy generation rate for the thermal
component is proportional to the square of the dimen-

sionless temperature di�erence t: The importance of
this for cryogenic applications (low absolute tempera-
ture T ) is clear.

Considering now two streams in a heat exchanger
(see Fig. 1 for example), with hot and cold inlet tem-
peratures T2 and T1, respectively, we can write

d _Sgen � _m1 ds1 ÿ
�

q 0 dx
T� DT

�
1

� _m2 ds2

�
�

q 0 dx
T� DT

�
2

ÿ _m1R1
dp1
p1
ÿ _m2R2

dp2
p2

, �8�

which becomes, on integration,

_Sgen �
ÿ

_mcp

�
1
ln

�
T1out

T1

�
� ÿ _mcp

�
2
ln

�
T2out

T2

�
� � _mR�1ln

�
p1
p1out

�
� � _mR�2ln

�
p2
p2out

�
, �9�

Initial observation of this equation indicates that if the
terminal temperatures T1, T2, T1out, and T2out are ®xed

by process considerations such as a pinch condition,
which implies ®xed driving temperature di�erences, the
®rst two terms are ®xed, but the pressure drop contri-

Nomenclature

a speed of sound
A parameter (dimensional)
A1 parameter

A2 parameter
As surface area
Ac ¯ow area

B dimensionless heat ¯ow (Eq. (24))
Be Bejan number
B0 dimensionless parameter (Bejan, Eq. (73))

B1 dimensionless parameter (Eq. (64))
B2 dimensionless parameter (Eq. (68))
B3 dimensionless parameter (Eq. (82))
cp speci®c heat at constant pressure

C heat capacity rate
C1 constant (Eq. (83))
C� ratio of heat capacity

dh hydraulic diameter
f Fanning friction factor
g dimensionless mass velocity (Bejan)

G mass velocity
j Colburn factor
L ¯ow length
_m mass ¯ow number
M Mach number
Ntu number of thermal units
Ns entropy generation number based on heat ca-

pacity rate
Ns1 entropy generation number based on heat

¯ow

Nu Nusselt number
p pressure
Pr Prandlt number

ps perimeter

_Q heat ¯ow
q ' heat gradient
r0 inner radius of tube

R ideal gas constant
Re Reynolds number
St Stanton number

S ' entropy gradient
_Sgen entropy generation rate
t dimensionless temperature ratio, Tin/Tout

T absolute temperature
v velocity
x axial distance

Greek symbols
a heat transfer coe�cient
e e�ectiveness

r density
t dimensionless temperature di�erence DT/T
Z dynamic viscosity

l thermal conductivity

Subscripts

1 cold stream
2 hot stream
in inlet
out outlet

c cold stream
h hot stream
min minimum

max maximum
opt optimum
ref reference
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butions can be controlled by increasing the ¯ow area
in accordance with the core velocity equation [7]. This

point will be further investigated later in the paper.
Some fundamental relationships linking entropy gen-

eration with heat exchange parameters are ®rst re-

examined for the case of zero pressure drop. Pressure
drop is then taken into account in Section 4, allowing
for optimisation, or entropy minimisation analysis.

3. Zero pressure drop

3.1. Balanced counter¯ow

We start with the case of balanced counter¯ow,

referring to Fig. 1, for which the performance is
described by the e±Ntu relationship

e � T1out ÿ T1

T2 ÿ T1
� T2 ÿ T2out

T2 ÿ T1
� Ntu

1�Ntu
, �10�

which gives [8],

_Sgen � _mcpln

264
�
1� T1

T2
Ntu

��
1� T2

T1
Ntu

�
�1�Ntu� 2

375
: �11�

The most obvious way of non-dimensionalising this
equation is to divide by the heat capacity rate _mcp of
each stream, giving the entropy generation number Ns

[8]:

Ns �
_Sgen

_mcp

� ln

264
�
1� T1

T2
Ntu

��
1� T2

T1
Ntu

�
�1�Ntu� 2

375
, �12�

or, in terms of e�ectiveness,

Ns � ln

��
1� e

�
T2

T1
ÿ 1

���
1ÿ e

�
1ÿ T1

T2

���
: �13�

This function is illustrated in Fig. 2, with e as abscissa.
As noted by Bejan, Ns approaches zero in two limits:
Ntu41 (or e41), representing the ideal limit of zero
driving temperature di�erence; and Ntu (with e40).

Note the symmetry of the function, re¯ected in the
®gure with a maximum entropy generation at Ntu =
0.5. Bejan calls this behaviour the `entropy generation
paradox', and the Ntu40 limit the `vanishing heat

exchanger limit'.
Similar forms of curve with maxima have been

obtained by Sekulic [2] for other heat exchanger con-

®gurations.
The physical basis of this approach warrants some

further attention. Firstly, looking at the `low' limit,

expressing Ntu as

Ntu � St4L

dh

�14�

as Ntu tends to zero, either St (or heat transfer coe�-
cient) tends to zero, which is not a realistic scenario,
or the ¯ow length L tends to zero Ð for sensible
values of hydraulic diameter. Thus this limit practically

represents a vanishing ¯ow length, with correspond-
ingly a vanishing heat ¯ow _Q, as noted by Bejan [9].
Further, the ®xed (®nite) capacity rate implies a ®nite

¯ow area, if only to comply with the assumption of
negligible pressure drop. This in turn requires that the
lateral dimensions are ®nite, so we can say that the

Fig. 2. Bejan's parameter Ns versus e, for (1) T2=T1 � 1:25,
(2) T2=T1 � 1:667, (3) T2=T1 � 2:5, (4) T2=T1 � 5:Fig. 1. Elemental surface in heat exchanger.
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exchanger only `vanishes' in one dimension, which is
not physically sensible. A truly vanishing heat exchan-

ger has all dimensions vanishing, and hence zero ¯ow
rate by implication. Thus the fact of zero entropy gen-
eration has no practical signi®cance for heat exchanger

purposes. The upper, L tends to in®nity, limit is the in-
®nite area, or ideal limit and _Q � _Qmax in the usual
notation.

These observations point to using the heat ¯ow as a
more appropriate means of non-dimensionalising the
entropy generation, since the heat ¯ow characterises

the raison d'eÃ tre of the exchanger. The most rational
way in terms of exergy analysis would be to non-
dimensionalise by _Q=T0: This approach is taken by
Witte and Shamsundar [4], and London and Shah [5].

A disadvantage is that it introduces a further tempera-
ture (the ambient T0) into the analysis, in addition to
the terminal temperatures T1 and T2, and complicates

presentation. At this point it is worth noting that the
basic Eq. (9) easily reduces to the form expressed inde-
pendently by Witte and Shamsundar and London and

Shah, by putting

ÿ
_mcp

�
1
� ÿ _mcp

�
c
�

_Q

Tcout ÿ Tcin

, �15a�

and

ÿ
_mcp

�
2
� ÿ _mcp

�
h
�

_Q

Thin ÿ Thout

, �15b�

so

_Sgen �
_Q

Tcout ÿ Tcin

ln

�
Tcout

Tcin

�

�
_Q

Thin ÿ Thout

ln

�
Thout

Thin

�
, �16�

and

_Sgen

_Q
� 1

�Tc

ÿ 1
�Th

, �17�

where �Tc and �Th are the log-mean temperatures. This
is the form found by Witte and Shamsundar, and

London and Shah.
A further point of interest here is that Witte and

Shamsundar derived Eq. (17) by interposing a revers-

ible heat engine and heat pump between the two
streams, and showed that the necessary heat inter-
action _Q0 with the environment was equal to the lost
net work _Wrev, or in other words the lost capability of

the system to do work, represented by the Gouy±Sto-
dola relationship:

_Wrev � T0
_Sgen: �18�

The maximum Ns � _Sgen= _mcp indicated in Fig. 2 thus
corresponds to the maximum work rate, or power,

that could be obtained from the system with given
¯ow rates if the heat exchanger were replaced by a re-
versible power system, with perfect internal heat

exchangers, leaving the terminal temperatures intact.
This contrasts with the normal power generation scen-
ario which utilises constant temperature ¯ow streams

and the di�erence in heat ¯ow between them.
In the current approach we non-dimensionalise by

_Q=T1, in order to avoid the introduction of another

variable (T0), and call the revised entropy generation
number Ns1, to avoid confusion with Bejan's Ns based
on _mcp: Since the heat ¯ow is

_Q � _mcpe�T2 ÿ T1 �, �19�

the entropy generation number becomes

Ns1 � T1
_Sgen

_Q

� 1

e�T2=T1 ÿ 1� ln
 
�1ÿ T2Ntu=T1 ��1� T2Ntu=T1 �

�1�Ntu� 2
!
:

�20�

Ns1 � 1

e�T2=T1 ÿ 1� ln
��

1� e
�
T2

T1
ÿ 1

��
�
�
1ÿ e

�
1ÿ T1

T2

���
� Ns

e�T2=T1 ÿ 1� : �21�

This function is shown in Fig. 3(a), for the same range

of T2=T1 as Fig. 2. Note that Bejan's Ns (the logarith-
mic term in the equation) has been divided by
e�T2=T1 ÿ 1� which is _Q= _mcpT1, to obtain Ns1: This
dimensionless heat ¯ow is proportional to e�ectiveness

as shown in Fig. 4(a) for the same values of T2=T1: Its
e�ect on Ns1 is more readily grasped by its reciprocal,
Fig. 4(b), which is multiplied by Bejan's Ns to obtain

Fig. 3(a).
Summarising the above arguments, we see that

the maximum entropy generation rate �Ns� for a

®xed heat capacity rate _mcp occurs when the corre-
sponding heat ¯ow is one half of the maximum
(i.e., at e � 0:5). Interestingly, this corresponds to
the case examined by Sekulic [2] relating the

entropy generation to that of the adiabatic mixing
of the two streams. Bejan's approach of non-dimen-
sionalising by heat capacity rate would thus be

appropriate to apply to a power generation or pro-
cess situation in which the heat exchanger is a func-
tion in a given pair of ¯ow streams but its heat

load is not speci®ed and the absolute entropy gener-
ation is to be controlled. The purpose of the
exchanger is not then to exchange a given rate of
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heat, but to enable the system to operate with

given irreversibility. For arbitrary selection of e, the
heat ¯ow is then determined by Eq. (19), and tends
to zero in the `vanishing heat exchanger limit' of

e40, and to its maximum in the `perfect' heat

exchanger limit of e41:
Conversely, for process situations in which the heat

load _Q is given, the entropy generation rate �Ns1�

Fig. 3. (a) Entropy generation number Ns1 (Eq. (21)). (b) Entropy generation number Ns1: Simpli®cation (Eq. (23)).

Fig. 4. (a) Parameter _Q= _mcpT1 �� B � �� e=�T2=T1 ÿ 1��: (b) Parameter _Mcp= _Q �� 1=B � �� �T2=T1 ÿ 1�=e�:

J.E. Hesselgreaves / Int. J. Heat Mass Transfer 43 (2000) 4189±4204 4193



decreases monotonically as e or Ntu increases. Note
that the formulation of Ns1 is such that for a given

heat capacity rate _mcp and initial temperatures T1 and
T2, the speci®cation of heat load _Q �< _Qmax� directly
determines e and hence _Sgen, as is evident from Eq.

(21) since all four terminal temperatures are then ®xed.
If _Q and temperature limits only are speci®ed, the pro-
cess designer has one degree of freedom � _mcp or e),
linked by Eq. (19).
The ratio Ns1 now behaves in a more intuitively

reasonable way, completing the resolution of the `para-

dox'. Bejan [10] states: `` . . .we expect any heat transfer
irreversibility to increase monotonically as heat
exchanger area (or Ntu) decreases''. These obser-
vations also apply to the unbalanced cases dealt with

in the following section.
A simpli®cation of Eq. (20) can be obtained by

writing the operand of the logarithmic term as264
�
1� T1

T2
Ntu

��
1� T2

T1
Ntu

�
�1�Ntu� 2

375
� 1� Ntu

�1�Ntu� 2
�
T2

T1
ÿ 1

� 2

: �22�

For small values of Ntu
�1�Ntu� 2 �

T2

T1
ÿ 1� 2, valid for many

applications, a single term in the series expansion is

adequate, giving

Ns1 � T1
_Sgen

_Q
1�1ÿ e�

�
1ÿ T1

T2

�
: �23�

The closeness of this linearisation is evident in
Fig. 3(b), especially for low T2=T1:
The design problem is simpli®ed somewhat by writ-

ing the dimensionless heat ¯ow as

B � _Q= _mcpT1 � e�T2=T1 ÿ 1�, �24�

since this is a function of speci®ed process parameters,
and expressing the temperature ratio T2=T1 in terms of

B and e: The new relationship then becomes

Ns1 � 1

B
ln

�
�1� B�

�
1ÿ e

B

�e� B�
��
: �25�

This is shown in Fig. 5.
As mentioned by Witte and Shamsundar, the exergy

loss is simply obtained by multiplying Ns1 by T0=T1:
Witte and Shamsundar also observed that in many
cases (e.g., Brayton cycle recuperators, feed preheat

trains) the cold inlet temperature T1 is very close to
the environmental temperature T0, thus justifying the
corresponding simpli®cation in their analysis. The gen-

erality of T0 6�T1 is retained in the present work.
A further observation on the present formulation

(Eq. (21)) is that Ns1 can exceed unity. This corre-
sponds to the point made by Bejan [10] that Witte and

Shamsundar's thermodynamic e�ciency parameter Z �
1ÿ T0

_Sgen= _Q can be negative in cryogenic operational
conditions Ð a conceptually inconvenient result.

3.2. General analysis for exchangers with ¯ow imbalance

In this case, characterised by _m1 6� _m2, with the ratio
�c _m�max=�c _m�min�Cmax=Cmin denoted by C�, the entropy

Fig. 6. Bejan's entropy generation number Ns, for (1) C
� � 1,

(2) C � � 1:5, (3) C � � 5, (4) C � � 1000:
Fig. 5. Entropy generation number Ns1 in terms of parameter

B.
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generation rate becomes [1], again neglecting the press-
ure drop contribution:

_Sgen � Cminln

�
T1out

T1

�
� Cmaxln

�
T2out

T2

�
, �26�

for the case with stream 2 having the larger heat ca-
pacity rate, giving

_Sgen

Cmin

� ln

�
1� e

�
T2

T1
ÿ 1

��
� C �ln

�
1ÿ e

C �

�
1ÿ T1

T2

��
,

�27�

where

e � T1out ÿ T1

T2 ÿ T1
� C �

T2 ÿ T2out

T2 ÿ T1
: �28�

This is the entropy generation number Ns [11], and is

shown in Fig. 6 for C � � 1, 1:5, 5 and 1000.
The entropy generation number Ns1 then becomes

Ns1 � T1
_Sgen

_Q
� T1

e�T2 ÿ T1 �
�

ln

�
1� e

�
T2

T1
ÿ 1

��
� C �ln

�
1ÿ e

C �

�
1ÿ T1

T2

���
, �29�

where

_Q � Cmin�T1out ÿ T1 � � Cmax�T2 ÿ T2out �

� eCmin�T2 ÿ T1 �: �30�

Note that in the limit of the balanced counter¯ow case
C = 1, this reduces to Eq. (13) with e � Ntu=�1�
Ntu�: For the case of stream 1 having the larger heat
capacity, the corresponding equation is

Ns1 � T1
_Sgen

_Q

� T1

e�T2 ÿ T1 �
�
C �ln

�
1� e

C �

�
T2

T1
ÿ 1

��

� ln

�
1ÿ e

�
1ÿ T1

T2

���
, �31�

with

_Q � Cmax�T1out ÿ T1 � � Cmin�T2 ÿ T2out �: �32�

In Figs. 7 and 8 Eqs. (29) and (31) are shown for
C � � 1:0, 1:5, 2 and 1000 and T2=T1 � 1:2 and 1.5 in
terms of e�ectiveness, illustrating the e�ect of whether

the hot or cold stream have the highest heat capacity
rate. All cases exhibit the lower limit of
Ns1 � 1ÿ T1=T2, and the curves shown correspond to
the complement of Witte and Shamsundar's [4] e�-

ciency parameter with T1 � T0: It is clear that imbal-
ance Ð either way Ð increases entropy generation,
and that only in the balanced case does Ns1 approach

zero in the limit e41: The thermodynamic advantage
of the hot stream having the highest heat capacity rate
is also evident, as was observed by Witte and Sham-

Fig. 7. (a) Ns1 versus e�ectiveness, T2=T1 � 1:2 (hot stream highest _mp). (b) Ns1 versus e�ectiveness, T2=T1 = 1.2 (cold stream

highest _mcp).
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sundar for their e�ciency approach. Physically, this
re¯ects the higher mean temperature of heat exchange.

Since the above formulations are in terms of the
thermal e�ectiveness e, they are perfectly general, and
are independent of exchanger ¯ow arrangements.

Speci®c common arrangements are considered brie¯y
below, in terms of the practically useful Ntu.

3.3. Unbalanced counter¯ow

The e±Ntu relationship for this case is given by

e �
1ÿ exp

�
ÿNtu

�
1ÿ 1

C �

��
1ÿ 1

C �
exp

�
ÿNtu

�
1ÿ 1

C �

�� , �33�

giving Ns1±Ntu relationships from Eq. (29) as shown in
Fig. 9, for temperature ratios T2=T1 of 1.2 and 1.5, for
values of C� of 1, 1.5, 2 and 1000, the latter approxi-

mating to the condensing case of C � � 1:

3.4. Cocurrent (parallel) ¯ow

The e±Ntu relationship for this case is given by

e �
1ÿ exp

�
ÿNtu

�
1� 1

C �

��
1� 1

C �

, �34�

and the corresponding Ns1±Ntu relationship is shown
in Figs. 10 and 11, for the temperature ratios T2=T1 �
1:2 and 1.5. It is clear that the e�ect of ¯ow imbalance

is minimal, re¯ecting the thermodynamic similarity of
this con®guration to that of condensation, with C � �
1 (see below).

3.5. Condensing on one side

For condensation, with C � � 1, the e±Ntu relation-
ship is particularly simple:

e � 1ÿ exp� ÿNtu�: �35�
Eq. (29) simpli®es to

Ns1 �
ln

�
1� e

�
T2

T1
ÿ 1

��
e
�
T2

T1
ÿ 1

� ÿ T1

T2
, �36�

and allows a relatively simple expression in terms of
Ntu [12]:

Fig. 8. (a) Ns1 versus e�ectiveness, T2=T1 � 1:5 (hot stream highest _mcp). (b) Ns1 versus e�ectiveness, T2=T1 � 1:5 (cold stream

highest _mcp).
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Fig. 9. (a) Ns1 versus Ntu, T2=T1 � 1:2 (hot stream highest _mcp). (b) Ns1 versus Ntu, T2=T1 � 1:5 (hot stream highest _mcp).

Fig. 10. Ns1 versus Ntu, T2=T1 � 1:2 (cocurrent ¯ow). Fig. 11. Ns1 versus Ntu, T2=T1 � 1:5 (cocurrent ¯ow).
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Ns1 �
ln

�
1� ÿ1ÿ exp� ÿNtu���T2

T1
ÿ 1

��
ÿ
1ÿ exp� ÿNtu���T2

T1
ÿ 1

� ÿ T1

T2
:

�37�
This is shown in Fig. 12.

3.6. Evaporation on one side

For this case C � � 0, the e�ectiveness relation is the
same as for condensation, Eq. (35), and Eq. (31) gives
on substitution

Ns1 �
ln

�
1ÿ e

�
1ÿ T1

T2

��
e
�
T2

T1
ÿ 1

� � 1, �38�

and in terms of Ntu:

Ns1 �
ln

�
1ÿ ÿ1ÿ exp� ÿNtu���1ÿ T1

T2

��
ÿ
1ÿ exp� ÿNtu���T2

T1
ÿ 1

� � 1: �39�

This is shown in Fig. 13. Comparing Figs. 12 and 13,
the strong di�erence between the two cases of conden-

sation and evaporation as the temperature ratio T2=T1

is increased is clearly seen.

4. Finite pressure drop

4.1. Optimisation based on local rate equation

We start with the basic Eq. (5) [14,11] for entropy
production rate at a given point in the heat exchanger

surface with a bulk temperature T. A single stream
only is examined.
Non-dimensionalising by q 0=T gives

Ns1 �
T _S
0
gen

q 0
� t

1� t
� _m

rq 0

�
ÿ dp

dx

�
: �40�

Substituting from standard equations for heat transfer

surface parameters [14] gives

Ns1 � fRe 2

32St3

"
q 0Z

_mr
ÿ
cpT

�3=2
# 2

tÿ3 � t
1� t

: �41�

Bejan [14,9] then treats the square bracket term as con-
stant, on the basis that the heat rate q 0 is speci®ed as
constant. The equation is then di�erentiated with
respect to t to obtain a minimum in terms of Bejan's

Fig. 13. Ns1 for evaporation on one side

�T2=T1 � 1:2, 1:5, 2:0, 3:0).
Fig. 12. Ns1 for condensation on one side

�T2=T1 � 1:2, 1:5, 2:0, 3:0).
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parameter A. Although q 0 is constant (e.g., with
length), however, it is not independent of t, as is now

shown:

q 0 � apsDT, �42�

where ps = perimeter of surface, giving

q 0 � StcpGpsDT � StGcpTpst: �43�

Thus a given q ' simply relates G to DT and t, and ps

for the local condition, and the t embedded in q ' must
remain in the equations in order to optimise the contri-

butions from t and pressure drop. Mathematically, we
could re-write Eq. (41) as

Ns1 � f1�Re�f2�Re, t�tÿ3 � t
1� t

, �41a�

Physically this form of relationship arises because the
temperature di�erence is still the driving potential for
heat transfer. An important implication of this is that
if the heat rate is ®xed then t can only be optimised if

the mass ¯ow, or G, is allowed to vary: in fact G
becomes a function of t on optimisation, as we shall
show, with ps, or the hydraulic diameter still available

as a variable. The square bracket term in Eq. (41) is

� � �
ZStcpGpsDT

_mr
ÿ
cpT

�3=2 � J �after Bejan� �44�

� 4ZStt

rdhc
1=2
p T 1=2

: �45�

Thus J is a function of t, the other variables being
functions of local state conditions or Reynolds num-
ber. Re-expressing Eq. (41) in terms of t,

Ns1 �
 

fRe 2Z 2

2r 2d 2
h cpTSt

!
1

t
� t

1� t
: �46�

We can now validly di�erentiate for minimum Ns1

because the ( ) term is only a function of Re and T.
Expressing this term as A2, we have

Ns1 � A2

t
� t

1� t
, �47�

and di�erentiating for ®xed Reynolds number gives a
minimum at a value of t denoted by topt

topt � A1=2
2 � A2

1ÿ A2
1A1=2

2

for the normally small A2:

�48�

The minimum value of Ns then becomes

Ns1, min � 2A1=2
2

1� A1=2
2

�
A2

�
1ÿ A1=2

2

�
1� A1=2

1

12A1=2
2

� 2topt

for small A2:

�49�

These corrected optimum values of Ns1, min are smaller,
by the factor 2=31=2 � 1:1547, than those obtained by
Bejan of

topt, Bejan � �3A2 �1=2� 31=2topt � 1:732topt, �50�

a substantial correction in the optimum condition,

which gives

Ns1, min, Bejan � 4

31=2
�A2 �1=2, or

Ns1, min Bejan � 4topt, Bejan

3
,

�51�

using the relationship of the current parameter A2 to

Bejan's A1 of

A2 � A 2
1

3t 2
: �52�

Implicit in Eq. (49) is that contributions from the
pressure drop and heat ¯ow are equal at the optimum
condition of Be = 0.5, which is consistent with Bejan's

analysis for developing plate ¯ow ([9,13] and indirectly
for counter¯ow heat exchangers [1]). The plate ¯ow
has a direct analogy with that of an o�set plate ®n

heat exchanger surface.
Looking further at the parameter A2,

A2 � f

2St

G 2

r 2cpT
� f

St

v 2

2cpT
: �53�

For a perfect gas, the speed of sound a is given by

a 2 � �gÿ 1�cpT, �54�

so Eq. (53) becomes

A2 � f

j
Pr 2=3

gÿ 1

2
M 2 � f

St

gÿ 1

2
M 2, �55�

where M is the Mach number.
Noting that gÿ1

2 M 2 is the incremental stagnation
temperature due to velocity, since Ts

T � 1 � gÿ1
2 M 2 for

compressible one-dimensional ¯ow, with Ts being the
stagnation temperature, the factor f=St in A2 is a
simple multiplier in this increment. It is readily shown

that the present analysis is consistent with a develop-
ment of the analysis of Shapiro [15], presented in log-
di�erential form, for a one-dimensional duct ¯ow with
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friction and heat addition, in which the Reynolds ana-
logy of f=St � 2 is assumed.

We now have

Ns1, min � 2M

 
f

j

Pr 2=3�gÿ 1�
2

!1=2

: �56�

Thus Ns1, min is only related to the area goodness factor
j=f and Mach number, for a given gas. For typical gas
side velocities of the order of a few m/s, and speed of

sound of say 200±300 m/s, a typical Mach number is
of the order of 0.01, which gives a corresponding
Ns1, min of the same order. The corresponding tempera-

ture di�erence is then a few degrees, being of order
(0.01�T K). An alternative form of the minimum
value, from Eqs. (49) and (53), is

Ns1, min � 2

 
fPr 2=3

j

_m 2

2r 2cpT

!1=2
1

Ac
: �57�

The general rate equation, from Eq. (47) is, in terms of

Mach number,

Ns1 � T _Sgen

q 0
� f

St

gÿ 1

2
M 2 1

t
� t

1� t
: �58�

For given process requirements of _m, r, and heating
load rate q ', it is clear, as observed by Bejan [1], that
the minimum local entropy generation rate relative to

q 0 can be made inde®nitely small, by making the ¯ow
area Ac large enough (or the mass velocity small
enough), which simultaneously reduces both the press-

ure drop and DT: The absolute generation rate is pro-
portional to q 0: More generally, the above analysis

shows that the Mach number is the fundamental con-
trolling parameter. Values for typical practical vari-
ations of A2 and t are shown in Fig. 14, from Eq. (47).

Bejan's variations, based on Eq. (41), are shown as a
surface plot in Fig. 15 for comparison.
It is clear from Eqs. (56) and (57) that the shape of

the Ns1, min locus is linear with M or 1=Ac if f=j is con-
stant, that is, independent of Ac and hence Re. In gen-
eral f=j is a (usually weak) function of Re, as already

remarked.

4.2. Application to single tube heat transfer

The form of Eqs. (56)±(58) is such that they are
independent of the type of surface (or duct) involved,
and thus are valid directly for application to a single

duct or tube. For the circular tube, the only di�erence
now is that the ¯ow area is simply dependent on the
tube (=hydraulic) diameter, in contradistinction to the

arbitrary duct case in which hydraulic diameter is inde-
pendent of ¯ow area. This then applies a direct coup-
ling between ¯ow area and temperature di�erence (for

a given heat ¯ow/unit length, as analysed by Bejan
[16]), which gives an extra constraint and `skews' the
optimum distribution of entropy generation.
The basic equation for a circular tube is (Bejan):

S 0 � q 0 2

pNulT 2
� _m 2f

p 2r 2Tr 2o
�59�

Expressed in the form of the entropy parameter Ns1,

Fig. 15. Ns versus t and Bejan's parameter A.Fig. 14. Parameter Ns versus t and A2.
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this becomes, with some manipulation,

Ns1 � TS 0

q 0
� q 0

pNulT
� B1Re

4

t
� t� B1Re

4

t
: �60�

where

B1 � F

N

p 2Z5

32lr 2T _m 2
, �61�

and

F � 0:046 �62a�

N � 0:023Pr4 �62b�

for the commonly-used Dittus±Boelter correlation for
turbulent tube ¯ow. But for a ®xed axial heat transfer
rate q 0 the Reynolds number and temperature di�er-

ence are coupled, as indicated above, by

q 0 � pNulTt, �63�

giving

Ns1 � t� B2

t6
, �64�

where

B2 � B1

�
q 0

pNlT

�5

�65�

which is independent of t because it implicitly contains
the variable Re.

Di�erentiation with respect to t and optimisation
then gives the optimum topt in terms of B2 and Re:

topt � �6B2 �1=7: �66�

and yields the minimum Ns1, min:

Ns1, min � topt

�
1� 1

6

�
�
�
61=7 � 1

66=7

�
�B2 �1=7: �67�

The corresponding optimum Reynolds number is

Reopt �
�

q 0

pNultT

�1=0:8

, �68�

which gives the same value (10750) as the analysis of
Bejan [16] for the conditions given in the example of
Bejan of an air ¯ow rate of 100 kg/h at a mean tem-
perature of 1100 K and 1 bar pressure, and with a

temperature gradient of 10 K/m. Bejan gives, with a
small correction,

Reopt � 2:0233Prÿ0:714 Bo0:357, �69�

where the parameter Bo is given by

Bo � r _mq 0

Z5=2�lT�1=2
�70�

The distribution ratio of 1 to 1/6 (=0.166) embodied

in Eq. (67) is the same as that of Bejan. As seen in
Fig. 16, the entropy generation rate is relatively insen-
sitive to Re over quite a wide range of practical inter-
est, for these conditions.

4.3. Application of the rate equation to balanced
counter¯ow

The analysis so far is based on a local rate process,
and is thus valid for a given point (position, tempera-

ture, etc.) in a stream within a heat exchanger. We
need now to study in greater depth its application to
actual heat exchanger streams with temperature vary-

ing along the stream. Considering the rate Eq. (48),
still for a single side,

d _Sgen

dx
� q 0

T

�
A2

t
� t

�
for small t �71�

and

q 0 � ÿ _mcp
dT

dx
�72�

we have, substituting for q ' in Eq. (71),

d _Sgen

dT
� ÿ _mcp

�
A2

t
� t

�
�73�

Recalling that from Eq. (53),

Fig. 16. Variation of single tube Ns with Re for Bejan's [16]

example.
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A2 � f

2St

G 2

r 2cpT
� f

2St

G 2R 2T

p 2cp

for a perfect gas: �74�

Here, G 2 is ®xed by the mass ¯ow rate and through-
¯ow area (which is normally constant) and f=2St is
only a weak function (in general of Re (or density). In

addition, the variation of absolute pressure p is small
in comparison with that of temperature, as shown in
Appendix A, so we can put

A2 � AT � f

2St

G 2

p 2cp

R 2T

�where A is very nearly constant�,
�75�

noting that A has dimensions of 1/T. Thus we can re-
formulate (73) as

d _Sgen

dT
� ÿ _mcp

T

�
AT

DT
� DT

T 2

�
, �76�

which now accounts correctly for the density variation.
Thus

_Sgen � ÿ _mcp

"
A

DT

�T2out

T2

T dT� DT
�T2out

T2

dT

T 2

#
, �77�

for side 1, since DT is constant with ¯ow length in a
balanced exchanger.

Integrating,

_Sgen � ÿ _mcp

�
A

2DT

ÿ
T 2

1 ÿ T 2
1out

�ÿ DT
�

1

T1out

ÿ 1

T1

��
�78�

Putting

B3 � _mcpA

2

ÿ
T 2

1 ÿ T 2
1out

� �79�

and

C1 � ÿ _mcp

�
1

T1out

ÿ 1

T 2
1

�
�80�

we have

_Sgen � B3

DT
� C1DT �81�

Di�erentiation gives a minimum when

DT 2 � DT �2 � B3

C1
� A

2
�T1 � T1out �T1T1out �82�

and the minimum value is accordingly

_Sgen, min � B3

DT �
� C1DT � � 2

�����������
B3C1

p
�83�

with equal contributions from temperature di�erence
and pressure drop as for the local case.

Note that in the limit of T1out4T1, the optimum
temperature di�erence converges to the `local' value of

DT � tT � T
�������
AT
p

� TA1=2
2 : �84�

The expansion of (83) gives

_Sgen, min � 2 _mcp

 
f

2St

G 2R 2

p 2cp

!1=2

2

�T1out ÿ T1 �

�
�������������������������
�T1 � T1out �
2�T1 T1out �

s
�for one side� �85�

and for both sides:

_Sgen, min � 2 _mcp

 
f

2St

G 2R

p 2cp

!1=2

1

�T1out ÿ T1 �
�������������������������
�T1 � T1out �
2�T1T1out �

s

� 2 _mcp

 
f

2St

G 2R

p 2cp

!1=2

2

�T2 ÿ T2out �
�������������������������
�T2 � T2out �
2�T2 T2out �

s
�86�

In the limit of vanishingly small DT (Bejan's [1] con-

dition), T2out � T1 and T1out � T2, giving

_Sgen, min � 2 _mcp�T2 ÿ T1 �

�

�����������������������������������������������������������������������������������������������
�T1 � T2 �
2�T1T2 �

24 f

2St

G 2R

r 2cp

!1=2

1

�
 

f

2St

G 2R

r 2cp

!1=2

2

35
vuuut

�87�

Bejan's corresponding relationship for both sides is

_Sgen, min � 2 _mcp�T2 ÿ T1 �������������
T1 T2

p
24 f

2St

G 2R

p 2cp

!1=2

1

T 1=2
1ref

�
 

f

2St

G 2R

p 2cp

!1=2

2

T 1=2
2ref

35 �88�

where T1ref and T2ref are the implied reference tempera-

tures pertaining to the de®nition by Bejan of dimen-
sionless mass velocity g1 as g1 � G

�2rp�1=2 : It is clear from
Appendix A that the density is closely proportional to
the inverse of absolute temperature, whilst the relative

variation of pressure is small, so that g1 is not constant
along the exchanger as assumed by Bejan. Inspection
of Eqs. (87) and (88) shows that Bejan's relationship

and the more general one are in agreement if
T1ref � T2ref � �T1 � T2�=2, by Bejan's assumption of
in®nitesimal DT, or in other words, if the density in g1
is selected at the arithmetic mean temperature of both
streams Ð a felicitous result.
For one side, the consequences of evaluating the
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entropy rate at a single terminal temperature instead

of using the full optimum relationship are shown in
Fig. 17, in terms of the variable t � Tin=Tout of the hot
stream.

The present analysis thus re¯ects the relaxation of
the requirement for constant g1, and the optimum for-
mulations given by Eqs. (85) and (86) are applicable

for both non-vanishing DT and variable density. They
are thus more accurate for optimising in the case of
real balanced counter¯ow exchangers with `long'
duties, i.e. high temperature span.

5. Concluding remarks

An attempt has been made in this work to resolve
the `entropy generation paradox' identi®ed by Bejan,

by consideration of the basis of non-dimensionalising
the entropy generation rate. It is shown that the
approach introduced by Witte and Shamsundar of
using the heat ¯ow to non-dimensionalise enables a

uni®cation of the approaches and a clari®cation of the
paradox. The characteristic temperature used is the
lower terminal temperature, and the analysis, initially

developed for balanced counter¯ow, is extended to
other ¯ow con®gurations.
A development of the rate process for a general heat

transfer surface has corrected the analysis of Bejan, the
new results showing equi-partition of the optimum
entropy generation between temperature di�erence and

pressure drop components, being now consistent with
other optimised results. This analysis is extended to
show that the fundamental controlling parameter for
ideal gas ¯ows is the ¯ow Mach number, thus making

a formal correspondence with Shapiro's [15] log-di�er-
ential presentation of entropy generation in one-dimen-

sional duct ¯ow. Application of the process to a
single-tube geometry, optimising the temperature

di�erence, yields the same result as Bejan, who opti-
mised for Reynolds number.
Finally, the local rate equation is used to develop a

new relationship for optimising balanced counter¯ow
exchangers for a `long' duty, that is with signi®cant
temperature changes of the working ¯uids. This is

shown to be compatible with Bejan's [1] analysis if the
reference temperature used in the latter is the arith-
metic mean of the terminal temperatures.

Without going to the specialised further stage of
incorporating the exergy expended in manufacture of a
heat exchanger, on which there have been several stu-
dies, clear needs for further work exist in examining

the optimisation of unbalanced exchangers with press-
ure drop included, and also of nearly balanced exchan-
gers with the `ideal' of constant DT=T: The latter will

be the subject of a future paper.

Appendix A. Variation of pressure

The dimensionless increment of absolute pressure p
in a given increment of length dx can be written

Dp
p
� ÿ2f

dh

G 2

r
dx

p
�A1�

In the same distance, the ¯uid (assumed to be an ideal

gas) has a temperature change D1T (to distinguish
between it and the driving temperature di�erence DT�
given by

D1T

T
� q 0x

_mcpT
� 2StDT dx

Tdh

�A2�

But we have shown that at the optimum point, also

covering near-optimum conditions,

DT
T
� t � A1=2

2 �
 

f

2St

q 0 2

r 2cpT

!1=2

�A3�

giving, on substitution, and dividing Eq. (A1) by (A2)0BB@
Dp
p

D1T

T

1CCA � ÿ 2gt
gÿ 1

�A4�

or, in terms of Mach number0BB@
Dp
p

D1T

T

1CCA � ÿ� 2f

St

�1=2 g

�gÿ 1�1=2M �A5�

Fig. 17. Relative entropy generation for evaluating Eq. (84) at

terminal temperatures.
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Thus the relative pressure drop compared with the
relative temperature change is of the same order as the

dimensionless driving temperature di�erence t, or
Mach number M, near the optimum condition. We
can thus say that with this proviso, to a high degree of

accuracy, the relative density change is proportional to
the relative temperature change.
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